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Abstract: l’ls ddikm of die&yhinc to ai&hy&s in the pesence of a analytic amomat of e-y pure. 

N,S- bis(Z[~)_l_(~y~~ylllpbenyl~)~, &To&d rbe -rig - alcohols in 

nearly quantitative yields with optical purities of up to 99 46 e.e. under mild reacti conditions. 

The addition of diithylzinc to benzaldehyde in the presence of a diiino alcohol to give l-phenyl-l- 

propanol was first reported by Mukaiyama, 1 while Oguni and Grni% and Noyori et aL2b reported the first 

examples of asymmetric induction applying a chill &unincAcohol. Most of the chkal ligands which have 

been employed since then. including aminoalcohols. quaternary ammonium salts, oxaborolidii and diols, 

contain two &positioned hetero-atoms. 3 Noyori nicely demonstrated that such ligands when reacting with 

diorganozinc compounds give organozinc a&oxides, particularly when potentially coordinating groups are 

present in positions suitable for the formation of five-membered N. U- or 0,0- chelate rings? 

In the course of a study of copper-catalyzed enantioselective conjugate additions of Grignard reagents to 

a$-unsaturated ketones. we found that chiral and non-chiral ortbo-amino substituted copper(I) arenethiolates 

are very efficient catalysk4 These catalysts, which contain a potentially N, S-chelating, mono-anionic ligand as 

a non-transferable group are aLso excellent catalysts in cross-coupling reactions5 and in the 1,6_addition reaction 

of 0rganometaIlic reagents to enynesters. 6 In this paper we report the application of these mono-anionic 

anmethiolate ligands la and (R)-lb in addition nzactions of diorganozinc reagents with aromatic and aliphatic 

aldehydes.’ 
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The air-stable zinc bis(arenethiolate) complexes 3a and (R,R)3b are easily accessible via the reaction of 

ZnC12 with two equivalents of 2-[(dimethylamino)methyl]- 1-trimethylsilylthiobenzene 2a and 24 (R)- 
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(dimethylatnino)ethyl]-I-trlmethylsilylthlohenzene 2b, respectively (eqn 1).8 The novel zinc arenethiolates 3s 

and 3b have been characterized by elemental analysis, 9 lH and 13C NMR spectroscopy9 and an X-ray crystal 

structure determination of 3b. lo 
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NMe, 
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Z&I, fl 
w 

w-b or CYCl, 
- 2 MgSiCl 

(1) 

2aR=H 3aR=H 
2bR=Mo 3bR=Me 

It appears that 3a and 3b are very efficient catalysts for the addition of diethylzinc to aldehydes. 

Moreover, reactions using chiral3b proceed with excellent enantioselectivity.r2 

J, 

1. ZnEta 3b 

2. NH&I (2) c 
tduene. II 

Table 1: Addition of diethylzinc to various aldehydes in the presence of 2 mol 46 3a or (R,R)-3b. 

entry R’ 

3a (R.R)-3b 

conversionc selectivitya conversiona SeleCtivitya e-e. (%I)~ 

(%) (%) (%) (%) (configuration) 

1 C6H5 97 97 >99 >99 94(S) 
2 4-ClC6H4 >99 97 98 >99 95(S) 
3 2-ClC6H4 98 95 >99 96 96(s)= 

4 4-Mem6H, 84 97 94 >99 95(S) 
5 4MeC6H4 >99 95 >99 >99 99(S) 
6 (E)-C6H5CH=CH 98 93 >99 95 75(S) 
7 2-fury1 >99 >99 >99 >99 89(g) 
8 C6H5CH2CHz >99 >99 >99 >99 69(S) 

u Determiied by GC. ’ Enantiomeric excess detemimd by HPJ_C using a Die1 cbiicel OD column unless noted cab&. 

Absolute configurations determined from optical rotation. ’ Determined by ‘H NMR integration of the charactetistic proton signals 

in the presence of the &ii shift reagent (fris[trinuoromethyUIymoxymetbylene-(+)ca~. 

As summarized in Table 1, the alkylation reactions of the aldehydes in the presence of 2 mol 96 (R,R)-3b 

predominantly give the corresponding optically active @)-secondary alcohols. Thus, 3b having the (R)- 

configuration at the benzylic carbon atoms obeys the configurational rules found by Noyori for the p-amino- 

alcohols.3b The amount of chiral induction clearly depends on the nature of the aldebyde: while both the a,P- 

unsaturated and the aliphatic aldehydes (entry 6 and 8) give moderate e.e.‘s of 75 % and 69 46, respectively, 

hetcrocyclic Zfurylaldehyde (entry 7) is converted in 89 96 e.e. and all aromatic aldehydes tested gave excellent 

e.e.‘s of 2 94 8. 

It is likely that the zinc bis(arenethiolate) complexes 3s and 3b themselves are not the actual catalysts in 

these addition reactions, but instead the ethylzinc arenethiolate complexes 4a and 4b, which ate readily formed 
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from the reaction of 3a and 3b with ZnEt2 present in large excess in the reaction medium (Eqn. 3). Indeed. the 
use of separately prepared 4a and 4b in the zinc-catalyzed addition of diethylzinc to benzaldehyde gave the same 
results as obtained with 3a and 3b. 

3aR=H 4aR=H 
3bR=Me 4bR=Me 

Ethylzinc arenethiolates 4a and 4b are white crystalline solids, which were characterized by ‘H and 13C 
NMR.13 We presume that 4a and 4b are diietic in the solid state via Zn-S bridging of the two mono-anionic 

sulphur atoms as depicted in eqn. 3. This is supported by the molecular structure of the analogous methylzinc 

arenethiolate, which is a dimer with a central Zn2Sa core in the solid state.l 

An attractive aspect of the present results is the ready accessibility and simplicity of the chiral arenethiolate- 

anion @)-lb. Yet, the chemoselectivity and enantiomeric excesses are similar to or even exceed those earlier 

reported.3b We are currently extending the application of this ligand in the zinc-catalyzed addition of various 

dialkylzinc reagents to aldehydes as well as to IV-diphenylphosphinoylimines.14 Further studies concerning 

mechanistic details are in progress. 
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layer was extracted with dichlorometbane (2 x 20 mL), the combined organic layers were dried on 

Na2S04 and concentrated in vucuo, isolated yields 72-9696. The organic products wete analyzed by *H 
and 13C NMR spectroscopy and GC-MS. 
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